In this content we discuss the following terms:
- Subset
- Types of subset
- Proper subset
- Improper subset
- Super set
- Power set
- Disjoint sets
- Overlapping sets
- Universal set
- Difference between sets
- Complement of a set
- Union of sets
- Intersection of sets
- Commutative law in sets
- Associative law in sets
- Distributive law in set
- De Morgan's law
Subset:تحتی سیٹ
If A and B are two sets i.e
A={1,2,3,4} , B ={1,2,3,4,5,6}
In these sets we can easily observe that all the elements of set A is present in the set B so we said that set A is subset of set B.
Subset can be define as " If every element of a set A is also the element of set B then the set A is called the subset of set B". And it is denoted by a symbol A ⊂ B.
اگر کسی سیٹ کے تمام ارکان کسی دیے گئے سیٹ میں موجود ہوں تو وہ اس دیئے گئے سیٹ کا تحتی سیٹ کہلاتا ھے۔
If we read this D ⊂ G
set D is subset of set G.
Note:
ہر سیٹ اپنے آپ کا بھی تحتی سیٹ ہوتا ہے۔
Every set is also a subset of itself.e.g
set G is subset of set G, so G ⊂ G
Set D is subset of set D , so D ⊂ D
Types of Subset:
There are two types of Subset
1- Proper subset
2- Improper subset
واجب تحتی سیٹ اور غیر واجب تحتی سیٹ
Proper Subset: واجب تحتی سیٹ
If D and F are two sets, and all the elements of set D is also the element of set F but there is at least one element of set F is not present in set D, then set D is called proper subset of set F.
اگر ایک سیٹ کے تمام ارکان کسی دوسرے سیٹ میں موجود ہوں اور دوسرے سیٹ کے کم از کم ایک رکن ایسا ہو جو پہلے سیٹ میں موجود نہ ہو تو پہلا سیٹ دوسرے سیٹ کا واجب تحتی سیٹ ہو گا۔
It is denoted by D ⊂ F.
Example:
A={1,2,3,4,5,6} , S={2,4,6}
So set S is subset of set A and written as S ⊂ A.
Improper subset: غیر واجب تحتی سیٹ
If there are two set like H and T and both set contains same elements and equal number of elements, in other words both are equal sets OR set H is subset of set T and set T is subset of set H then we say set H is improper subset of set T and set T is improper subset of set H.
ایسے دو سیٹ جن کے تمام کے تمام ارکان ایک دوسرے میں موجود ہوں۔ یا دو مساوی سیٹ آ پس میں ایک دوسرے کے غیر واجب تحتی سیٹ ہوں گے۔
Super Set: سپر سیٹ
If A ={1,2,3,4} and
B={1,2,3,4,5,6,7,8,9,10}
In this example set A is subset of set B and it is denoted as A ⊂ B.
But the set B is the Super Set of set A and it is denoted as B ⊃ A.
Set B contains all elements of set A and also other elements.
اگر ایک سیٹ دوسرے سیٹ کا واجب تحتی سیٹ ہے تو دوسرا سیٹ پہلے سیٹ کا سپر سیٹ کہلاتا ہے۔
Note:
1- Each set is an improper subset of itself.
2- Empty set has no proper subset of itself.
Because empty set has only one subset which is empty set and it is improper subset.
3- A singleton set has only one proper subset of itself.
4- All the subsets of a set in proper subset except itself.
Power set: پاور سیٹ
A set which contains all the possible subsets of a given set is called power set.
ایسا سیٹ جو دیے گئے سیٹ کے تمام ممکنہ تحتی سیٹوں پر مشتمل ہو
Example:
D ={ 1,2}
The Power set of D can be written as
P(D) = { {} , {1} ,{2}, {1,2} }
In is example first three subsets are proper subset and 4th is improper subset of set S.
Short cut formula to fine that a set contains who many subsets of itself:
Which is 2ⁿ ( n is number of elements the set)
For example a set which contains four elements and how many subsets of this set have, we use the formula.
2ⁿ = 2⁴ = 2×2×2×2. = 16
Disjoint Sets: غیر مشترک سیٹ
Two sets are said to be Disjoint if there are no common element between them.
If we take intersection between these two sets then the result is empty set.
ایسے دو سیٹ جن کا کوئی بھی رکن ایک جیسا نہ ہو غیر مشترک سیٹ کہلاتے ہیں۔
Example:
A={1,2,3} , D ={5,7,8} in this example we see there is no common element between them so set A and set D in Disjoint set.
Overlapping Sets: متراکب سیٹ
Two sets are said to be Overlapping Sets if there is at least one element is common between them but not all the elements are common. In other words they are not subset of each other.
ایسے دو سیٹ جن کے کم از کم ایک رکن آ پس میں ملتا ہو پر سارے ارکان ایک جیسے نہ ہوں متراکب سیٹ کہلاتے ہیں۔
Examples of Overlapping Sets:
S ={1,2,3,4} ,H ={2,4,6,8} are overlapping Sets
F={3,5,7,8,9} , G ={8,12,14,15} are overlapping Sets
Universal Set: یونیورسل سیٹ
Universal Set is that which contains all the possible elements of the sets under consideration.
Universal Set is denoted by U.In other words universal Set in the super Set of all the given set which are under consideration.
ایسا سیٹ جو زیر غور یا زیر بحث دیئے گے سیٹوں کے تمام ارکان پر مشتمل ہو یونیورسل سیٹ کہلاتا ہے
Example:
U={1,2,3,4,5,6,7,8,9,10,11,12}
A={1,3,5}
C={2,4,6,8}
D={3,4,5,6,7}
In this example set U in universal Set of set A,set C and set D.
Difference of two sets:دو سیٹوں کا فرق
If S and D are two sets then S difference D is the set which contains all the elements of set S which are not the elements of set D. It is denoted by
S - D or S/D.
And D difference S is the set which contains all the elements of set D which are not the elements of set S. It is denoted by D - S or D/S.
Note:
S - D is not equal to D - S
Complement of a set: سیٹ کا کمپلینٹ
If A is a set and U is its universal Set then the difference set U/A is called the complement of set A and it is denoted by A' .Set A' ( complement of A) contains all the elements of universal Set U which are not the elements of set A.
یونیورسل سیٹ سے کسی بھی سیٹ کا کا فرق اس سیٹ کا کمپلینٹ کہلاتا ہے۔
Example:
U={1,2,3,4,5,6}
D={2,4,6}. Then
D' = U/D ={ 1,3,5 }
Operations on set
Union of two sets: دو سیٹ کا یونین
If A and B are two sets them the union of set A and set B can be represented by A B and the result is a set which contains all the elements of set A or set B or both A and B.
دو سیٹ کا یونین پہلے سیٹ کے ارکان یا دوسرے سیٹ کے ارکان یا دونوں سیٹوں کے تمام ارکان پر مشتمل ہوتا ہے۔
Example:
A ={1,2,3,4} , B {2,4,6,7}
So A ∪ B ={1,2,3,4} ∪ { 2,4,6,7}
A ∪ B ={ 1,2,3,4,6,7} ans.
If we find B ∪ A then
B ∪ A ={2,4,6,7} ∪ { 1,2,3,4}
B ∪ A ={1,2,3,4,6,7}
So we observe the result that
A ∪ B = B ∪ A
This is called Commutative law w.r.t union
قانون مبادلہ بلحاظ یونین کہلاتا ہے۔
Intersection of two sets: دو سیٹ کا تقاطع
If A and B are two sets them the intersection of set A and set B can be represented by A B and the result is a set which contains all the common elements of set A and B.
دو سیٹ کا تقاطع ان دونوں سیٹوں کے مشترکہ ارکان پر مشتمل ہوتا ہے
Example:
A ={1,2,3,4} , B {2,4,6,7}
So A ∩ B ={1,2,3,4} ∩ { 2,4,6,7}
A ∩ B ={2,4} ans.
If we find B A then
B ∩ A ={2,4,6,7} ∩ { 1,2,3,4}
B ∩ A ={2,4} ans.
So we observe the result
A ∩ B = B ∩ A
This is called Commutative law w.r.t Intersection.
قانون مبادلہ بلحاظ تقاطع کہلاتا ہے۔
Associative Law w.r.t Union and Intersection:
قانون تلازم بلحاظ یونین اور تقاطع ۔
If S,D snd F are three sets then the Associative law can be written as
S ∪ (D ∪ F ) = (S ∪ D) ∪ F Associstive law w.r.t union
S ∩ ( D ∩ F) = ( S ∩ D) ∩ F Associative law w.r.t intersection
Note:
To find union / intersection of three sets first of all we find union or intersection is any two sets and then the union or intersection of the third set with the resultant set.
Distributive Laws:
قانون تقسیمی
If Z, C and V are three sets then Distributive law of union over intersection is
Z ∪ ( C ∩ V ) = ( Z ∪ C ) ∩ (Z ∪ V )
And Distributive law of intersection over union is
Z ∩ ( C ∪ V ) = (Z ∩ C ) ∪ ( Z ∩ V )
De Morgan's Laws: ڈی مارگن کے قوانین
If H and K are the sub set of a universal set U then
(H ∪ K)´ =H´ ∩ K´ and (H ∩ K )´ = H´ ∪ K´
( ' ) symbol represent the compliment of a set.
subset
subset examples
subset symbol
subset meaning
subset examples with answers
subset definition
subset meaning in math
subset definition math
types of subsets
types of sunset and examples
types of subsets in R
types of subsets real numbers
3 types of subsets
types of proper subset symbol
types elements and subsets of culture
proper subset
proper subset definition
proper subset symbol
proper subset definition with examples
proper subset meaning in Urdu
proper subset of (1,2,3)
proper subset sign
improper subset symbol
improper subset
improper subset definition with examples
improper subset meaning in Urdu
improper subset Venn diagram
super set
super set symbol
super set definition with examples
superset definition
super set sign
super set examples
super set and subset
superset meaning
power set
power set of empty set
power set definition
power set examples
power set formula
power set definition and examples
disjoint set
disjoint set examples
disjoint set meaning in Urdu
disjoint set symbol
disjoint set sign
disjoint set definition and examples
disjoint set data structure
disjoint set Venn diagram
overlapping sets
overlapping sets definition
overlapping sets symbol
overlapping set meaning in Urdu
overlapping sets examples
overlapping sets Venn diagram
overlapping sets formula
overlapping sets definition and examples
universal set
universal set examples
universal set definition in math
universal set symbol
universal set sign
difference between sets
difference between sets and group
difference between sets and lists
complement of a set
complement of a set definition
complement of sets Venn diagram
complement of sets worksheet
complement of set b is denoted by
complement of sets symbol
complement of sets calculator
union of sets
union of sets definition
union of sets Venn diagram
union of sets life examples
union of sets definition with examples
union of sets examples with Venn diagram
union of sets calculator
intersection of sets
intersection of sets Venn diagram
intersection and union of sets
intersection of sets definition
intersection of list of sets python
intersection of sets examples
intersection and union of sets calculator
commutative property in sets
commutative law in sets
commutative law in set theory
commutative law of sets proof
commutative law of sets with examples
commutative law sets symbol
associative law in Sets
associative law of intersection
associative law of union
distributive law in sets
how to prove distributive law in sets
definition of distributive law in sets
distributive law of set in discrete mathematics
de Morgan's law
de Morgan's law in sets
de Morgan's law for 3 sets
de Morgan's law proof
de Morgan's theorem
de Morgan's law in set theory
state de Morgan's law in set theory
de Morgan's law in fuzzy sets
de Morgan's law set difference
de Morgan's law three sets
Have a nice day.
0 Comments